夜城直播_夜城直播app官方正版下载_夜城直播高品质美女在线视频互动社区

MATLAB低代碼AI優(yōu)化過程控制

2023/12/22 11:37:06 人評論 次瀏覽 分類:過程控制  文章地址:http://prosperiteweb.com/tech/5280.html

中國制造業(yè)正面臨激烈的市場競爭與挑戰(zhàn),大家的共識是投資科技創(chuàng)新和產(chǎn)業(yè)升級。人工智能是重要的變革力量,也是制造業(yè)創(chuàng)新升級的重要方向。制造業(yè)有許多特點(diǎn)非常適合嘗試應(yīng)用人工智能,比如復(fù)雜的生產(chǎn)流程、大規(guī)模的數(shù)據(jù)處理、嚴(yán)格的質(zhì)量控制、瞬息萬變的市場需求。

大量的研究和應(yīng)用偏向與大數(shù)據(jù)和市場營銷,而我們希望回歸制造業(yè)本身,聊一聊如何將人工智能應(yīng)用于過程工業(yè)的核心領(lǐng)域:過程控制。


過程控制數(shù)據(jù)分析與PCA

過程控制或質(zhì)量控制是監(jiān)控和調(diào)整工業(yè)制造過程以保持預(yù)期生產(chǎn)結(jié)果、優(yōu)化生產(chǎn)效率的實(shí)踐。

也許你不熟悉制造業(yè),沒關(guān)系,你很可能聽說過六西格瑪。六西格瑪最初是制造業(yè)使用統(tǒng)計技術(shù)進(jìn)行質(zhì)量控制和過程改進(jìn)的一套工具。


直至今天,過程工程師們?nèi)匀辉谑褂靡粤鞲瘳敒榇淼牡慕y(tǒng)計過程控制(Statistical Process Control,SPC)監(jiān)控制造過程的許多樣本,例如芯片制造過程中測量的關(guān)鍵尺寸、化學(xué)反應(yīng)器內(nèi)的溫度等。工程師們在控制圖(controlchart)中通過可視化來研究生產(chǎn)過程的能力(ProcessCapability),并從統(tǒng)計學(xué)角度分析樣本,使用均值、標(biāo)準(zhǔn)差/也就是西格瑪,以及低于下閾值或高于上閾值的估計概率。



Process Capability

mu—Sample mean
sigma—Sample standard deviation
Pl—Estimated probability of being below Lower
Pu—Estimated probability of being above Upper
Cp—(U-L)/(6*sigma)
Cpl—(mu-L)./(3.*sigma)
Cpu—(U-mu)./(3.*sigma)
Cpk—min(Cpl,Cpu)

(p.s.MATLAB提供易用的過程控制分析工具,但統(tǒng)計過程控制也有其局限性:不能測量太多的變量,不能識別問題的來源,不能確定解決方案,典型的SPC分析需要專家等。


那么,人工智能能否幫助突破統(tǒng)計過程控制的這些限制嗎?
答案是肯定的。機(jī)器學(xué)習(xí)技術(shù)可以補(bǔ)能傳統(tǒng)的統(tǒng)計過程控制。原因是:過程數(shù)據(jù)通常涉及來自不同來源的大量變量,這通常比大量觀測更難處理。

如何確定需要關(guān)注的主要變量是什么?
它們對這個過程有什么影響?以及如何控制這些變量,以便始終如一地實(shí)現(xiàn)高質(zhì)量并保持低成本?

而機(jī)器學(xué)習(xí)可以幫助處理大量變量。例如,主成分分析(PCA)和潛在結(jié)構(gòu)投影(PLS)非常適合分析和理解過程數(shù)據(jù)。這些算法通過探索變量之間的相關(guān)性來識別重要因素,幫助我們優(yōu)化流程并找到最佳操作參數(shù)。


機(jī)器學(xué)習(xí)還可以從歷史數(shù)據(jù)中學(xué)習(xí),適用于處理分類、回歸、識別非線性模式和異常檢測等任務(wù)。


2、利用SVM進(jìn)行過程監(jiān)控

在電解銅生產(chǎn)過程中,一年內(nèi)每天測量兩個銅樣品,并記錄八種金屬雜質(zhì)(Ag/銀、Ni/鎳、Pb/鉛、Bi/鉍、Sb/銻、As/砷、Te/碲、Se/硒)的水平。

我們可以應(yīng)用控制圖,通過評估過程可變性來監(jiān)測和改進(jìn)產(chǎn)品或過程。


識別過程異常的一種更強(qiáng)大的方法是應(yīng)用無監(jiān)督異常檢測,例如OneClassSVM。無監(jiān)督方法不需要標(biāo)記異常,但您需要了解異常發(fā)生的頻率。


下圖為OneClassSVM檢測四種金屬雜質(zhì)的結(jié)果:

OneClassSVM檢測四種金屬雜質(zhì)的結(jié)果

這種方法也可以方便地擴(kuò)展為針對流式數(shù)據(jù)的增量學(xué)習(xí)模型,使用MATLAB統(tǒng)計和機(jī)器學(xué)習(xí)工具箱提供的incrementalOneClassSVM模型對動態(tài)采集的數(shù)據(jù)進(jìn)行分析和異常檢測。


Mdl=incrementalOneClassSVM();

[Mdl,isAnom,scores]=fit(Mdl,Xtrain);

3、MATLAB低代碼工具幫助你快速開始AI開發(fā)

對于制造業(yè)的工程師和領(lǐng)域?qū)<襾碚f,在使用AI這種新型技術(shù)工具時,并不希望有過高的門檻,例如人工智能背景知識、編程技能等。

MATLAB為領(lǐng)域?qū)<覀兲峁┝艘粋€端到端的低代碼開發(fā)工作流程,從數(shù)據(jù)準(zhǔn)備、人工智能建模到系統(tǒng)仿真和部署。你可以快速開始使用現(xiàn)成的人工智能算法,使用低代碼應(yīng)用程序標(biāo)記數(shù)據(jù),配置和訓(xùn)練人工智能模型。


根據(jù)數(shù)據(jù)和任務(wù)復(fù)雜度,可以在機(jī)器學(xué)習(xí)模型或深度神經(jīng)網(wǎng)絡(luò)之間選擇合適的方法,對于過程控制中所使用的結(jié)構(gòu)化數(shù)據(jù),機(jī)器學(xué)習(xí)方法能夠提供訓(xùn)練過程相對快捷且部署難度低的模型。


以機(jī)器學(xué)習(xí)為例,讓我們詳細(xì)介紹一下工作流程和常用工具:


首先,我們需要將數(shù)據(jù)導(dǎo)入MATLAB工作區(qū),如果數(shù)據(jù)集太大無法直接導(dǎo)入內(nèi)存,可以使用數(shù)據(jù)存儲對象Datastore索引存儲在本地或遠(yuǎn)程文件系統(tǒng)中的數(shù)據(jù),并增量式地讀取數(shù)據(jù)片段。


在開始構(gòu)建任何模型之前,很重要的一步是數(shù)據(jù)探查,了解數(shù)據(jù)結(jié)構(gòu)、對感興趣變量進(jìn)行可視化、查看數(shù)據(jù)分布,必要時,清除缺失值或異常值,進(jìn)行標(biāo)準(zhǔn)化處理,在MATLAB中使用LiveTasks或dataCleaner應(yīng)用程序可交互式地執(zhí)行此步驟。


接下來,提取并選擇合適的特征以供模型學(xué)習(xí)很重要,這取決于具體應(yīng)用,這一步驟可能需要圖像或信號處理技術(shù)以及統(tǒng)計分析等方法。


一旦數(shù)據(jù)集或特征準(zhǔn)備就緒,您就可以使用交互式應(yīng)用程序(如分類學(xué)習(xí)器或回歸學(xué)習(xí)器應(yīng)用程序)并行訓(xùn)練和比較模型。


為了更有效地建立模型,我們可以使用AutoML并結(jié)合小波散射來自動提取性能特征,優(yōu)化超參數(shù)以選擇最佳模型。


最后,可以使用Simulink對模型進(jìn)行測試,并使用自動代碼生成工具,將模型部署到目標(biāo)硬件。或者對于內(nèi)存或計算密集型模型,可以在云端訓(xùn)練模型并部署。

使用Simulink對模型進(jìn)行測試

作為這些工具的補(bǔ)充,MATLAB提供了更多其他交互式應(yīng)用程序。


例如,在數(shù)據(jù)準(zhǔn)備過程中,您可以使用不同的數(shù)據(jù)標(biāo)注應(yīng)用程序來處理不同類型的數(shù)據(jù),包括圖像、視頻、信號、點(diǎn)云等。


使用診斷特征設(shè)計器應(yīng)用程序,您可以提取統(tǒng)計和頻譜特征,并按照重要性對特征進(jìn)行排序。


進(jìn)入建模階段后,除了機(jī)器學(xué)習(xí)應(yīng)用程序,我們還可以使用深度網(wǎng)絡(luò)設(shè)計器構(gòu)建神經(jīng)網(wǎng)絡(luò),并使用實(shí)驗(yàn)管理器執(zhí)行超參數(shù)優(yōu)化。


此外,還有更多的領(lǐng)域應(yīng)用程序可供您探索和利用,以加快人工智能驅(qū)動的系統(tǒng)設(shè)計。


交互式應(yīng)用程序可以簡化工作流程,但算法或模型選擇可能需要反復(fù)迭代試錯。


4、先進(jìn)過程控制與MPC

在分析了制造過程后,我們需要將觀察結(jié)果有效地反饋并控制生產(chǎn)過程,這至關(guān)重要。模型預(yù)測控制(MPC)是許多工業(yè)制造應(yīng)用中先進(jìn)過程控制(APC)的成熟技術(shù)。

連續(xù)反應(yīng)器動力學(xué)在反應(yīng)堆溫度變化方面具有很強(qiáng)的非線性,并且在從一種操作條件過渡到另一種操作條件的過程中可能是開環(huán)不穩(wěn)定的。在特定工作條件下設(shè)計的單個MPC控制器無法在寬工作范圍內(nèi)提供令人滿意的控制性能。


在Simulink中實(shí)現(xiàn)非線性連續(xù)攪拌釜式反應(yīng)器CSTR的自適應(yīng)MPC控制:

在Simulink中實(shí)現(xiàn)非線性連續(xù)攪拌釜式反應(yīng)器CSTR的自適應(yīng)MPC控制

控制器性能根據(jù)設(shè)定值跟蹤和干擾抑制進(jìn)行驗(yàn)證。反應(yīng)器濃度CA設(shè)定點(diǎn)從原始的8.57(低轉(zhuǎn)化率)過渡到2(高轉(zhuǎn)化率)kmol/m^3。在過渡過程中,反應(yīng)器首先變得不穩(wěn)定,然后再次穩(wěn)定(見上側(cè)極點(diǎn)圖)。





5、人工智能改進(jìn)MPC
MPC通過識別工廠的模型,以預(yù)測工廠的未來行為。它還結(jié)合了一個優(yōu)化器,確保預(yù)測的輸出跟蹤所需的參考。

MPC的一個顯著優(yōu)點(diǎn)是它能夠處理MIMO系統(tǒng)以及非線性系統(tǒng)。


人工智能也擅長處理估計預(yù)測和非線性這兩個問題,很自然地想要聯(lián)合使用AI和MPC以期望獲得更好的系統(tǒng)性能。


聯(lián)合使用MPC+人工智能有不同的方案。


一種方案是利用人工智能來擬合控制對象模型,如基于神經(jīng)網(wǎng)絡(luò)的狀態(tài)空間模型(NeuralStateSpaceModel)。該訓(xùn)練后的模型將用作MPC控制器內(nèi)的預(yù)測模型。

AI-based prediction model inside MPC
AI-based prediction model inside MPC


另一種方案,您可以通過訓(xùn)練強(qiáng)化學(xué)習(xí)智能體模仿非線性MPC控制器的行為,從而用智能體策略替代非線性MPC,降低部署到硬件的難度,同時提高計算效率。

Reinforcement learning agent imitate MPC
Reinforcement learning agent imitate MPC


小結(jié)

制造業(yè)正朝著智能化、高端化、綠色化的方向轉(zhuǎn)型升級,而人工智能是其中重要的科學(xué)技術(shù)生產(chǎn)力。利用MATLAB低代碼AI開發(fā)平臺,來自制造業(yè)一線的過程控制工程師和專家能夠更大的發(fā)揮其專業(yè)經(jīng)驗(yàn),更快更好地落地人工智能技術(shù),使得公司與員工和諧進(jìn)步。

共有訪客發(fā)表了評論 網(wǎng)友評論

  客戶姓名:
郵箱或QQ:
驗(yàn)證碼: 看不清楚?